| Peer-Reviewed

Mechanical and Structural Properties of Zinc – Sodium - Phosphate Glasses Doped with Cu2O

Received: 5 November 2016     Accepted: 2 December 2016     Published: 20 December 2016
Views:       Downloads:
Abstract

Ternary Zinc-Sodium-Phosphate glasses doped with copper of the composition 40ZnO-(20-x) Na2O-40P2O5-xCu2O where x =0, 2, 4, 6, 8 mol % were prepared by the tradition quenching method. The effect of Cu ions on density, molar volume and microhardness has been investigated. FTIR was measured in the range (400-1600) cm-1 to investigate the effect of Cu ion on the structure of the studied glass. Longitudinal and shear velocities were measured for the studied glass using pulse echo technique. Elastic properties such as longitudinal modulus, shear modulus, bulk modulus, and Young’s modulus, Poisson’s ratio) and some physical parameters such as softening temperature, hardness, Debye temperature have been calculated. The ultrasonic results and the other measured parameters indicate the Cu ion increase the cross-link density by the formation of P-O-Cu. All the measurements are measured at room temperature.

Published in American Journal of Physics and Applications (Volume 4, Issue 6)
DOI 10.11648/j.ajpa.20160406.12
Page(s) 145-151
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Infrared, Infrared Deconvolution, Density, Molar Volume, Hardness, Ultrasonic Velocity, Elastic Moduli

References
[1] A. Bhide, K. Hariharan, Mater. Chem. Phys. 105 (2007) 213.
[2] R. K. Brow, J. Non-Cryst. Solids, 263-264 (2000) 1.
[3] J. A. Wilder, J. Non-Cryst. Solids, 38-39 (1980) 879.
[4] I. Abrahams, E. Hadzifejzovic, Solid State Ionics, 134 (2000) 249.
[5] H. Yung, P. Y. Shin, H. S. Liu, T. S. Chin, J. Am. Ceram. Soci. 80 (1997) 2213.
[6] M. R. Reidmeyer, M. Rajaram, D. E. Day. J. Non-Cryst. Solids, 85 (1986) 186.
[7] S. T. Reis, M, Karabulut, D. E. Day, J. Non-Cryst. Solids, 292 (2001) 150.
[8] D. Carta, J. C. Knowles, P. Guerry, M. E. Smith, R. J. Newport, J. Mater. Chem. 19 (2009) 150.
[9] P. Pascuta, G. Borodi, N. Jumate, I. Vida-Simiti, D. Viorel, E, Culea. J. Alloys Comp. 504 (2010) 479.
[10] B. S. Bea. M. C. Weinberg, J. Appl. Phs. 73 (1993) 7760.
[11] K. J. Rao Structural Chemistry of Glasses, El Sevier, 2002.
[12] E. I. Kamitsos, J. Mater. Sci. 11 (1976) 925-928
[13] A. Thulasiramudu, S. Buddhudu. J Quant Spectrosc Radiat Trans 2006; 97: 181-94.
[14] G. Lakshminarayana, S. Buddhudu. Spectrochim Acta Part A 2005; 62: 364-71.
[15] G. M. Bartenev. Structural and Mechanical Properties of Inorganic Glasses, Wolters-Nordho, Groningen. The Netherlands, 1970.
[16] C. Narayana Reddy, V. C. Veeranna Gowda, R. P. Sreekanth Chakradhar. J. Non-Cryst. Solids 354 (2008) 32.
[17] A. F. L. Almeida, D. Thomazini, I. F. Vasconcelos, M. A. Valente, A. S. B. Sombra, Int. J. Inorg. Mater. 3 (2001) 829.
[18] Samir. M. Marzouk, Mater. Chem. Phys. 114 (2009) 188.
[19] Y. M. Moustafa, E. El. Egili, J. Non-Cryst. Solids, 240 (1998) 144.
[20] R. K. Brow, D. R. Tallant, K. Meyer, C. C. Phifer, J. Non-Cryst. Solids 191 (1995) 45-55.
[21] K. Meyer, J. Non-Cryst. Solids 209 (1997) 227-239.
[22] P. Y. Shin, T. S. Shin, J. Non-Cryst. Solids, 260 (1998) 50-57.
[23] A, Chahine, M. Et-Tabirou, M. El Benaissi, M. Haddad, J. L. Pascal, Mater. Chem. Phys. 84 (2004) 341-347.
[24] R. Gresch, W. Muller-Warmuth, H. Dutz, J. Non-Cryst. Solids 34, (1979) 127.
[25] Y. Moustafa, H. Doweidar, G. El-Damrawi, Phys. Chem. Glasses 35 (1994) 104.
[26] H. Elhaes, M. Attallah, Y. Elbashar, M. El-Okr, M. Ebrahim, Physica B 449 (2014) 251-254.
[27] L. Pauling, in The Nature of Chemical Bond, Cornell University Press (1960) 98.
[28] Fin, Linzhang, J. Non-Cryst. Solids 42 (1980) 142.
[29] V. Rajendran, A. Nashara Begum, M. A. Azooz, F. H. El Batal, Biomateriales, 23 (2002) 4263-4275.
Cite This Article
  • APA Style

    E. Nabhan, A. Nabhan, N. Abd El Aal. (2016). Mechanical and Structural Properties of Zinc – Sodium - Phosphate Glasses Doped with Cu2O. American Journal of Physics and Applications, 4(6), 145-151. https://doi.org/10.11648/j.ajpa.20160406.12

    Copy | Download

    ACS Style

    E. Nabhan; A. Nabhan; N. Abd El Aal. Mechanical and Structural Properties of Zinc – Sodium - Phosphate Glasses Doped with Cu2O. Am. J. Phys. Appl. 2016, 4(6), 145-151. doi: 10.11648/j.ajpa.20160406.12

    Copy | Download

    AMA Style

    E. Nabhan, A. Nabhan, N. Abd El Aal. Mechanical and Structural Properties of Zinc – Sodium - Phosphate Glasses Doped with Cu2O. Am J Phys Appl. 2016;4(6):145-151. doi: 10.11648/j.ajpa.20160406.12

    Copy | Download

  • @article{10.11648/j.ajpa.20160406.12,
      author = {E. Nabhan and A. Nabhan and N. Abd El Aal},
      title = {Mechanical and Structural Properties of Zinc – Sodium - Phosphate Glasses Doped with Cu2O},
      journal = {American Journal of Physics and Applications},
      volume = {4},
      number = {6},
      pages = {145-151},
      doi = {10.11648/j.ajpa.20160406.12},
      url = {https://doi.org/10.11648/j.ajpa.20160406.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpa.20160406.12},
      abstract = {Ternary Zinc-Sodium-Phosphate glasses doped with copper of the composition 40ZnO-(20-x) Na2O-40P2O5-xCu2O where x =0, 2, 4, 6, 8 mol % were prepared by the tradition quenching method. The effect of Cu ions on density, molar volume and microhardness has been investigated. FTIR was measured in the range (400-1600) cm-1 to investigate the effect of Cu ion on the structure of the studied glass. Longitudinal and shear velocities were measured for the studied glass using pulse echo technique. Elastic properties such as longitudinal modulus, shear modulus, bulk modulus, and Young’s modulus, Poisson’s ratio) and some physical parameters such as softening temperature, hardness, Debye temperature have been calculated. The ultrasonic results and the other measured parameters indicate the Cu ion increase the cross-link density by the formation of P-O-Cu. All the measurements are measured at room temperature.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Mechanical and Structural Properties of Zinc – Sodium - Phosphate Glasses Doped with Cu2O
    AU  - E. Nabhan
    AU  - A. Nabhan
    AU  - N. Abd El Aal
    Y1  - 2016/12/20
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ajpa.20160406.12
    DO  - 10.11648/j.ajpa.20160406.12
    T2  - American Journal of Physics and Applications
    JF  - American Journal of Physics and Applications
    JO  - American Journal of Physics and Applications
    SP  - 145
    EP  - 151
    PB  - Science Publishing Group
    SN  - 2330-4308
    UR  - https://doi.org/10.11648/j.ajpa.20160406.12
    AB  - Ternary Zinc-Sodium-Phosphate glasses doped with copper of the composition 40ZnO-(20-x) Na2O-40P2O5-xCu2O where x =0, 2, 4, 6, 8 mol % were prepared by the tradition quenching method. The effect of Cu ions on density, molar volume and microhardness has been investigated. FTIR was measured in the range (400-1600) cm-1 to investigate the effect of Cu ion on the structure of the studied glass. Longitudinal and shear velocities were measured for the studied glass using pulse echo technique. Elastic properties such as longitudinal modulus, shear modulus, bulk modulus, and Young’s modulus, Poisson’s ratio) and some physical parameters such as softening temperature, hardness, Debye temperature have been calculated. The ultrasonic results and the other measured parameters indicate the Cu ion increase the cross-link density by the formation of P-O-Cu. All the measurements are measured at room temperature.
    VL  - 4
    IS  - 6
    ER  - 

    Copy | Download

Author Information
  • Physics Dept., Faculty of Science (Girls), Al Azhar University, Cairo, Egypt

  • Mechanical Production Dept. Faculty of Engineering, Al Minia University, Al Menia, Egypt

  • Ultrasonic Laboratory, National Institute of Standard, Giza, Egypt

  • Sections