This paper is the study of a multivariate regression model construction related to management accounting,based on the nature of accounting under the viewpoint of the big data and cloud computing perspective.This paper chooses the multi-factor time series prediction construction model, bring in the steady test of time intervening variable, find outthe dependence relationship between independent variable, dependent variableand the time series variable dependence. It improves the simulation levelof forecast model building and the significance level of variable coefficient, providing reliable basis for prediction and decision-making. The final prediction model structurein this paper is the combination of a straight line and curve prediction model structure.
Published in | Science Innovation (Volume 4, Issue 4) |
DOI | 10.11648/j.si.20160404.20 |
Page(s) | 228-234 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Management Accounting, Prediction Model, Intermediary Variables, Hybrid Structure
[1] | 张航,刘云.基于正相关因素混合模型结构中企业绩效评价模型研究-来自2015年上市公司经验数据验证.财务与会计改革2016年学术研讨会[c].福建省社会科学研究基地福建江夏学院财务与会计研究中心,教育部人文社会科学重点研究基地厦门大学会计发展研究中心、《当代会计评论》编辑部.2016.05 |
[2] | 张航,刘云.截面数据引入样本序列变量对模型构建作用的研究[c]中国会计学会第十五届全国会计信息化学术年会(2016)08 |
[3] | 吕书龙,刘文丽.几类最小一乘估计回归模型的求解[J].吉林师范大学学报(自然科学版).2011(02) |
[4] | 郑箫,金青.回归模型与时间序列在大坝变形监测中的应用[J].湖北师范学院学报(自然科学版).2010(01) |
[5] | 王全众.两类分析相关数据的Logistic回归模型[J].统计研究.2007(02) |
[6] | 孙尚拱,何平平.经典的用回归模型进行统计控制中的问题[J].数理统计与管理.2005(05) |
[7] | 程毛林.两种常用的基函数回归模型[J].统计与决策.2002(02) |
[8] | 谢远涛,杨娟.广义Gamma分布簇广义线性混合模型的构建[J].统计研究.2010(10) |
[9] | 李春红,张可娟,文利霞.基于空间自回归模型的中部经济增长分析[J].西南大学学报(自然科学版).2012(11) |
[10] | 陈若寒.福建省农民收入的空间自回归模型研究[J].现代经济信息.2013(21) |
[11] | 黄克明,胡端平,张国忠.我国通货膨胀与对外经济的半相依自回归模型的研究[J].系统工程理论与实践.2003(04) |
[12] | 吴国富,孙传忠.利用周期自回归模型对1995年部分宏观经济指标的预测与分析[J].系统工程理论与实践.1995(07) |
[13] | 代洪伟,凌能祥.居民消费价格指数的非参数自回归模型[J].佳木斯大学学报(自然科学版).2012(01) |
[14] | 王丽娟,毛程连.地方政府间土地优惠竞争关系研究——基于空间自回归模型的实证检验[J].财经论丛.2012(06) |
[15] | 杨树旺,冯兵.环境库兹涅茨曲线与自回归模型用于三废污染预测的比较分析[J].管理世界.2007(03) |
[16] | 白仲林,史哲.存在测量误差的面板自回归模型的工具变量估计[J].统计与信息论坛.2009(10) |
[17] | 胡义芳.武汉市新建住房价格研究[J].现代经济信息.2014(12) |
[18] | 危黎黎,李超,李余辉.基于STAR模型的人民币汇率非线性特征及预测[J].统计与决策.2014(09) |
[19] | Bai, J, Kao, C."On the Estimation and Inference of a Panel Cointegration model with Cross-Sectional Dependence,". contributions to Economic Analysis |
[20] | Bai, J, Chihwa Kao, Serena Ng.Panel cointegration with globalstochastic trends. Journal of Econometrics. 2009 |
APA Style
Zhang Hang, Liu Yun. (2016). The Research Based on Big Data Management Accounting Model Building. Science Innovation, 4(4), 228-234. https://doi.org/10.11648/j.si.20160404.20
ACS Style
Zhang Hang; Liu Yun. The Research Based on Big Data Management Accounting Model Building. Sci. Innov. 2016, 4(4), 228-234. doi: 10.11648/j.si.20160404.20
AMA Style
Zhang Hang, Liu Yun. The Research Based on Big Data Management Accounting Model Building. Sci Innov. 2016;4(4):228-234. doi: 10.11648/j.si.20160404.20
@article{10.11648/j.si.20160404.20, author = {Zhang Hang and Liu Yun}, title = {The Research Based on Big Data Management Accounting Model Building}, journal = {Science Innovation}, volume = {4}, number = {4}, pages = {228-234}, doi = {10.11648/j.si.20160404.20}, url = {https://doi.org/10.11648/j.si.20160404.20}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.si.20160404.20}, abstract = {This paper is the study of a multivariate regression model construction related to management accounting,based on the nature of accounting under the viewpoint of the big data and cloud computing perspective.This paper chooses the multi-factor time series prediction construction model, bring in the steady test of time intervening variable, find outthe dependence relationship between independent variable, dependent variableand the time series variable dependence. It improves the simulation levelof forecast model building and the significance level of variable coefficient, providing reliable basis for prediction and decision-making. The final prediction model structurein this paper is the combination of a straight line and curve prediction model structure.}, year = {2016} }
TY - JOUR T1 - The Research Based on Big Data Management Accounting Model Building AU - Zhang Hang AU - Liu Yun Y1 - 2016/11/02 PY - 2016 N1 - https://doi.org/10.11648/j.si.20160404.20 DO - 10.11648/j.si.20160404.20 T2 - Science Innovation JF - Science Innovation JO - Science Innovation SP - 228 EP - 234 PB - Science Publishing Group SN - 2328-787X UR - https://doi.org/10.11648/j.si.20160404.20 AB - This paper is the study of a multivariate regression model construction related to management accounting,based on the nature of accounting under the viewpoint of the big data and cloud computing perspective.This paper chooses the multi-factor time series prediction construction model, bring in the steady test of time intervening variable, find outthe dependence relationship between independent variable, dependent variableand the time series variable dependence. It improves the simulation levelof forecast model building and the significance level of variable coefficient, providing reliable basis for prediction and decision-making. The final prediction model structurein this paper is the combination of a straight line and curve prediction model structure. VL - 4 IS - 4 ER -