
Chapter 3

Algebraic Equations and
Fermat’s Last Theorem

Abstract
Diophantine equations are known from their comments by Fermat, many concern
geometrical assertions, a large part are algebraic equations. Pythagore’s equality enables
to prove algebraic equations and Fermat’s last theorem, with a property of the binomial
coefficients. I give simple proofs of these theorems and several generalizations. Fermat’s
theorems 2.3.3, 3.2.6 and most algebraic equations were unproved.





Chapter 3 Algebraic Equations and Fermat’s Last Theorem

3.1 Algebraic Equations

The diophantine equations are their origin in Diophant’s geometry (250 A.D.), his
work has been partly translated and published by Fermat with some proofs, more proofs
have been published latter by Euler Legendre and others during the 17–19th centuries. A
diophantine equation is an equation on Nk with integer coefficients, for some k > 1.
Most equations below are known from Fermat’s letters, the proofs are new or simpler
than the proofs already published.

Proposition 3.1.1 The area of a rectangle triangle is not a square in N.

Proof. From the equality (a2 + b2)2 = (a2 − b2)2 + 4a2b2, the edges of the triangle
can be choosen as x = a2 − b2, y = 2ab and the hypotenuse is z = a2 + b2, with a 6= b.
Its area is

A = ab(a2 − b2).

We may assume that gcd(a2 − b2, a2 + b2, 2ab) = 1, then a2 ± b2 are odd, one of a
and b is even and the other is odd, moreover gcd(a, b) = 1. The existence of a solution
for the equation A = B2 requires that a2 − b2 and ab are squares since they are mutually
prime.

Let a = α2 and b = β2, the equation a2 − b2 = X2 is equivalent to

(α2 − β2)(α2 + β2) = X2

with X odd. It follows that α2 − β2 = c2 and α2 + β2 = d2 where c and d are odd, α is
odd and β even

2a = c2 + d2, 2b = d2 − c2.

Let k0 be the largest integer such that 22k0 | b and let b = 22k0b1 where b1 is an odd
square. The equality d2 − c2 = 2b implies d2 − c2 is multiple of 22k0+1. Let d = 2u+ 1

and c = 2v + 1

8 | (d2 − c2) = 4(u2 + u+ v2 + v)

hence
2y = 4ab = d4 − c4 = 22(k0+2)Y 2,
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where Y is odd. It follows that 22(k0+1) | b which is contradictory. �

The surface of Pythagore’s triangles with edges (x, y, ) is always an even integer by
Theorem 3.2.1. Table (3.1) shows that two different rectangular triangles may have the
same surface.

Table 3.1: Surface of rectangular triangles

(x, y, ) S

(3, 4, 5) 6
(5, 12, 13) 30
(7, 24, 25) 48
(8, 15, 17) 60

(21, 20, 29) 60
(35, 12, 37) 60

By the same arguments, a4 − n2b4 cannot be a square with one of a and nb odd and
the other even, in particular the equation a4 − b4 = z4 cannot be solved.

Corollary 3.1.2 The surface of a rectangular triangle in Q∗3 is even.

Proof. A solution should satisfy

1 =
ak

bn

(k2

n2
− a2

b2

)
equivalently b3n3 = ak(b2k2−a2n2). A rectangular triangle with edges 2xy and x2−y2,
where x = bk and y = an, has the area abkn(b2k2−a2n2) but it cannot be equal to b4n4

by Proposition 3.1.1. �

Proposition 3.1.3 The equation

x4 + y4 = z2

has no solution such that gcd(x, y) = 1 in N∗3.
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Proof. Let z = a2 + b2 be the hypothenuse of a triangular triangle with edges x2 =

a2 − b2 and y2 = 2ab in N, where gcd(a2 − b2, 2ab) = 1, one of a and b is even and
the other is odd, they are mutually primes, x odd, y even and z is odd. The equations
x2 = a2 − b2 and y2 = 2ab imply a− b, a+ b, a and b are squares, let

a = α2, b = β2

where a and α are odd, b and β are even. From the equality y2 = 8aβ2, 4 | y and β is
even. Let β = 2cβ2 with β2 odd, the equation y2 = 2ab is equivalent to y2 = 22c+1aβ2

2

and y should be a multiple of 2c+1 which is contradictory. �

Proposition 3.1.4 The equation

x2n + y2n = z2

has no solution in N∗3.

The proof is similar.

Proposition 3.1.5 The equation

x4 − 2y4 = z2

has no solution in N∗3.

Proof. Let d = gcd(x, y), then d2 | z2 and we have to consider the equation with
gcd(x, y) = 1. Solutions of 2y4 + z2 = x4 should satisfy

z = a2 − b2, x2 = a2 + b2, y4 = 2a2b2

so x and z are odd and y is even, hence a or b should be even. Let y = 2c therofore
8c4 = a2b2, one of a and b is even and the other one is odd. Let a = 2kα with α odd, the
equation y4 = 2a2b2 becomes equivalent to

8c4 = 22kα2b2

with k ≥ 2 and c is even. Let c = 2nd with d odd, as 24n+3d4 6= 22kα2b2, there is no
solution. �
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Proposition 3.1.6 (Fermat) There exist integers a, b, c and x such that

x2 = a4 + b4 + c4.

For example, the sum 124 + 204 + 154 is the square of 481.

Proposition 3.1.7 The equation

x3 + y3 = 3z3

has no solution in N∗3.

Proof. We may assume without loss of generality that gcd(x, y, z) = 1, this implies
3 - y and 3 - x. Moreover, z - x and z - y for a3 + b3 6= 3 in N∗2, where x = az and
y = bz. The equation is equivalent to

4(x3 + y3) = (x+ y)(2x− y − i
√

3y)(2x− y + i
√

3y)

= (x+ y){(2x− y)2 + 3y2} = 12z3, (3.1)

(3.2)

and

(x+ y)(2x− y)2 = 3{4z3 − y2(x+ y)} (3.3)

these equalities imply 3 | (2x− y) or 3 | (x+ y).

Let 3 | (x + y), then 9 | {(x + y)3 − 3xy(x + y)} = x3 + y3 this entails 3 | z, then
by (3.1), either 3 | (2x − y) or 34 | (x + y). In the first case, it follows that 3 | x which
is excluded, the second case proves that 34k | (x+ y) for every k, so x and y are infinite
and there is no solution.

Let 3 | (2x− y), by (3.1)

3 | (2x− y)2 + 3y2 = 4(x2 − xy + y2)

it follows that 3 | x(2x− y)− (x2 − xy + y2) = x2 − y2. Since 3 - (x+ y), 3 | (x− y)

and 3 | (2x− y)− (x− y) = x, which is excluded. �
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The proof of Proposition 3.1.7 discusses the divisibility of the prime factors of x3 + y3

by 3, the same arguments prove that the equation

x3 + y3 = 3kz3

has no solution in N∗3, for every k such that 3 - k. Legendre (1825) proposed a global
and intricated proof of the unsolvability of the equations

x3 + y3 = Az3

in N∗3, for A = 1, 3, 5, 6, 2k, k ≥ 1. The case A = 1 is a special case of Fermat’s last
theorem proved in the next section and the above proof for A = 3 and 6 is much simpler
an direct, the other cases are left as exercises.

Proposition 3.1.8 The equation

x2 + 2 = y3 (3.4)

has a single integer solution (x, y) = (5, 3).

Proof. From the equation, x and y have the same parity and they cannot be even. Let
x = 2a+ 1 and y = 2b+ 1, the equation

2(a2 + a) + 1 = 4b3 + 3(2b2 + b)

implies b = 1, then (x, y) = (5, 3) is the unique solution, or b is odd. If b > 1, let
y = 4c+ 3, c is even and y = 8d+ 3, with an integer d. Two cases must be considered

1. x = 16k + 1 and d is odd, y = 16m + 11, with m odd and k = 1 (mod 3),
therefore x = 2 (mod 3) and y = 32m′ + 27,

2. x = 8k + 3 and d is even, y = 16m + 3, with m even and k odd, therefore
x = 16k′ + 11 and d is odd, y = 32m′ + 19,

but trying to solve the equation under one of these conditions leads to contradictions. �

There exist infinitely many integers k such that the equation

x2 + k = y3
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has solutions, k being defined from (x, y) in N⊗2. The question of Proposition 3.1.8
extends to find integer solutions (x, y) for integers k > 2 and to characterize the integers
k for which the equation may be solved.

Let k be odd, with x even and y odd, a necessary condition to solve the equation is y−1
2

and k−1
2 have the same parity. Furthermore, x is odd and y is even if and only if k = 7

(mod 8).

Let k be even, if x and y are even, x2 and k
4 have the same parity. If x and y are odd,

y−1
2 and k

2 have the same parity.

Proposition 3.1.9 The equation

x2 + 4 = y3 (3.5)

has the unique integer solutions (x, y) = (2, 2) and (11, 5).

Proof. Let x and y be even, x = 2a and y = 2b implies a2 + 1 = 2b3 and a is odd,
(x, y) = (2, 2) is a solution. If a > 1, let a = 2α+ 1, the equation 4(α2 + α) + 2 = 2b3

implies b is odd. Denoting b = 2c+ 1

2(α2 + α) = (b− 1)(b2 + b+ 1)

α2 + α = c(4c2 + 6c+ 3)

hence b = 1 (mod 4) and y = 2 (mod 8) = 2 + 8k but

α2 + α

2
= k(3 + 12k + 8k2)

and there is no solution. Let x = 2a+ 1 and y = 2b+ 1 be odd

2(a2 + a) + 2 = 4b3 + 3(2b2 + b)

implies b is even and (11, 5) is solution with b = 2. If b > 2, the equation is impossible
modulo 3. �

Proposition 3.1.10 The equation

x3 − 2ny3 = 1 (3.6)

does not have integer solutions (x, y, k).
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Proof. From (3.6), x is odd. With x = 2a+ 1

4a3 + 6a2 + 3a− ny3 = 0

then a3−ny3 = 0 (mod 3) and a−ny3 = 0 (mod 2), they are contradictory conditions
for the parities of a and ny3. �

Proposition 3.1.11 Let m > 1 in N such that 2 - z, the equation

x3 + y3 = 2mz, (3.7)

has infinitely many integer solutions.

Proof. The integers x and y have the same parity and we may assume that z = 2cξ

where ξ is odd and c ≥ 0. If they are even, 2α | x and 2β | y only if 3(α ∧ β) ≤ m.
Dividing x and y by 2[m+c

3 ], their ratios have the same parity if α ∧ β > [m+c
3 ],

otherwise they are odd, ξ | (x2 − xy + y2) which is odd and x+ y = 0 (mod 2m). �

Under the conditions, there is a large number of solutions, the next table presents
some of them.

Table 3.2: Solutions of equation (3.7)

m (x, y, z)

1 (1,3,14), (3,3,27)
2 (1,3,7), (2,4,18)
3 (2,4,9), (4,4,16), (5,3,19)

Proposition 3.1.12 The equation

xn + 1 = y2, (3.8)

with n > 2, has a single non trivial integer solution (x, y, n) = (2,±3, 3).

Proof. The equation does not have solutions with x = 1 or y = 2. Let x > 1, from
the equality xn = (y − 1)(y + 1), there exist integers h and k between zero and n with
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h + k > 0, a > 1 and b > 1 such that x = ab, y − 1 = akbh and y + 1 = an−kbn−h.
It follows that an−kbn−h − akbh = 2 and an−kbn−h − akbh = 2y. We first consider the
equality an−kbn−h − akbh = 2, if k = 0 and 0 < h < n it become anbn−h − bh = 2

and there is no solution, the case h = 0 and 0 < k < n is similar, if 0 < h, k < n let H ,
respectively k, be the minimum of h and n− h, respectively k and n− k, it is impossible
that aKbH = 1 or 2 and there is no solution. �

The bilinear equations for integers have always infinitely many solutions in Z. For
example

65x+ 14y = 4

where gcd(65, 14) = 1, has the solutions (x, y) = (2 − 14k, 65k − 9), with k in Z,
according to Lagrange’s method. The equation

24x+ 48y + 5z = 4

has the solutions (x, y, z) = (−1 − 2h − 3k, 1 + h − 2k, 6k − 4) with m and n in Z.
Solving it requires to solve two bilinear equations, 3a+ 5z = 4 and 8(x+ 2y) = a.

Theorem 3.1.13 Every linear diophantine equation

ax+ by = n

with variables x and y and constants a, b and n in Z has infinitely many solutions.

Proof. For every d such that gcd(a, b) = d and let n = dm, the equation is equivalent to
αx+ βy = m with gcd(α, β) = 1, gcd(α, n) = 1 and gcd(β, n) = 1. Let

x = km− βh

with integers h and k, the equation becomes m(αk − 1) + β(y − αh) = 0 where h and
k satisfy β | (αk − 1) and m | (y − αh), it has infinitely many solutions h and k. �

As a consequence, every linear diophantine equation with k variables can be solved by
decreasing progressively its degree. It splits into k − 1 independent bilinear equations
and it has infinitely many solutions.

Bilinear equations with a higher exponent are elliptic equations.
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Theorem 3.1.14 Every elliptic equation

ax2 + by2 = n

with variables x and y such that gcd(x, y) = 1 and with constants a, b and n in Z∗ such

that gcd(a, b) = 1 has solutions and they exists a finite number of values x1 ± x2 and

y1 ± y2.

Proof. There exist solutions such that gcd(a, y2) = n or gcd(b, x2) = n. Let (x1, y1)

and (x2, y2) be solutions, from the equation

a(x2
1 − x2

2) + b(y2
1 − y2

2) = 0 (3.9)

we have a | (y2
1−y2

2) and b | (x2
1−x2

2). Let bk = x1±x2 and am = y1±y2, multiplying
the first equation by k and the second one by m and adding them to (3.9) entails that k
and m are solutions of the equation

am2 + bk2 ± 2(kx2 ±my2) = 0.

For every k there exist no more than two values of m satisfying this equality and with
each values, k is solution of polynomial of degree two. They determine at most two values
of x1 ± x2 and four values of y1 ± y2. �

Example. The elliptic equation 7x2 − 4y2 = 31 has the solutions (±5,±6). Let (5 +

k, 6 +m) be another solution, then k even and m satisfies

7(k2 + 10k) = 4(m2 + 12m)

and (−10,−12) is a solution. The case k orm odd is impossible. Let k = 2a andm = 2b

such that
7(a2 + 5a) = 4(b2 + 6b)

this implies a = 2c with 7(2c2 + 5c) = 2(b2 + 6b) hence c = 2d with (b, d) such that
7(4d2 + 5d) = (b2 + 6b), it has a solution (b, d) = (−8,−42) therefore another solution
of the equation is (x, y) = (−59,−78) and it has a finite number of solutions.

The equation of Theorem 3.1.14 has infinitely many solutions if n is variable in Z∗. If
the last term is variable with an exponent, the number of solutions may be finite.
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Example. The equation x2 + y2 = z3 has the solutions (2, 2, 2), (2, 11, 2), (5, 10, 5),
(30, 10, 10), (9, 46, 13).

Various methods may be used to solve equations

x4 + ax3 + bx2 + cx+ d = y2

with unknown integers a, b, c, d and y in Q. Writing the square as

y =
(
x2 +

ax

2
− a2

8

)
,

the difference of y2 and the right side of the equation is zero for

x =
64d− a4

8(a3 − 8c)
.

The square and the difference may be defined in various forms according to conditions
on the integers, such as d is a cube. By the same method, there exist values where a third
degree polynomial is a cube, x3 + bx2 + cx+ d = y3 has the solution

x =
27d− b2

9(3c− b)
, y = x− a

3
.

A sixth degree polynomial is a cube

x6 + a1x
5 + a2x

4 + a3x
3 + a4x

2 + a5x+ a6 = y3

at a value x, root of the polynomial(
a3 +

17a3
1

27
− 2a1a2

)
x3 +

(
a4 − 3a2

2 +
5a2

1a2

3
− 2a4

1

9

)
x2

+
(
a5 − a1a

2
2 +

2a3
1a2

3
− a5

1

9

)
x+ a6 −

(
a2 −

a2
1

3

)3

and

y = x2 +
a1x

3
+ a2 −

a2
1

3
.

Other elliptic equations axp + byq = czr or with linear combinations of powers of
x and y have been studied in extensions of Z[i], with small exponents such as p = 2,
2 ≤ q ≤ 3 and 3 ≤ q ≤ 5.

68 Science Publishing Group



Chapter 3 Algebraic Equations and Fermat’s Last Theorem

3.2 Fermat’s Last Theorem

Though Fermat’s proof of this theorem has never been found, it is plausible from his
letters that he knew the arguments of a proof and that he really proved it. Fabry (1814)
published the first almost complete proof of Fermat’s last theorem, under the conditions
x, y and z are not multiple of the exponent n or only one of them is multiple of n and not
of n2. Heere the proof relies on Pythagore’s equality and on a property of the binomial
coefficients. For non zero integers, Pythagore’s equality

x2 + y2 = z2, (3.10)

is the equation satisfied by the edges x, y and z of a rectangular triangle, for example
32 + 42 = 52, 62 + 82 = 102, 132 = 122 + 52, 92 + 122 = 152, 82 + 152 = 172.

In (3.10), x and y are necessarily strictly smaller than z and they must be distinct since
the equation 2x2 = z2 has no integer solution. Assuming arbitrarily that x < y, the
equation has no solution with x = 1 and 2 because the difference between the squares of
integers y and z larger than x is always larger than x2 with these values. It follows that
z = 5 is the smallest non trivial solution of (3.10). Obviously, there is no solution (x, y, z)

of Pythagore’s equality with three odd numbers x, y and z. The solutions of (3.10) satisfy
the binomial formula for the sum and the difference of two square integers

x = 2ab, y = a2 − b2, z = a2 + b2. (3.11)

Theorem 3.2.1 Pythagore’s equality (3.10) with x, y and z > 1 is equivalent to

(4kl)2 + (km)2 = (kn)2 (3.12)

with m and n odd and with l in N∗, for every integer k of N∗.

Proof. It is sufficient to prove that Pythagore’s equality (3.10) is equivalent to

(4α)2 + y2 = z2

when x, y and z have no common factor. Since x, y and z cannot be all odd and satisfy
(3.10), we assume without loss of generality that y > 2 is odd and only one of x and
z is even. A solution with x = 2a + 1, y = 2b + 1 and z = 2n is impossible for
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4(a2 + a + b2 + b) + 2 6= 4n2. Therefore x is even, y and z can be choosen odd, x2 is
multiple of 8 and x is a multiple of 4. �

Lemma 3.2.2 Let n be an odd prime, for all strictly positive integers y and z

n−2∑
i=1

{
(−1)i

(
n− 1

i

)
− 1
}
yi−1zn−2−i = 0 (mod n).

The lemma is proved by induction from the additive expression of the binomial
coefficients(

j

i

)
=

(
j − 1

i− 1

)
+

(
j − 1

i

)
=

(
j − 2

i− 2

)
+ 2

(
j − 2

i− 1

)
+

(
j − 2

i

)
,

for i = 0, . . . , j. This formula generalizes to express
(
j
i

)
according to

(
j−k
i−k′

)
for k =

1, . . . , i − 1 and k′ = 0, . . . , i − k. It applies as k is the difference between two prime
number. The sum in Lemma 3.2.2 reduces to 3 with n = 3, to 5(y2 − yz + z2) with
n = 5, and to 7(y4 − 2y3z + 3y2z2 − 2yz3 + z4) with n = 7.

Before proving Fermat’s last theorem for an arbitrary integer n larger than two, we
prove it for n = 3 and 5.

Theorem 3.2.3 The equation

x3 + y3 = z3 (3.13)

has no solution with mutually prime integers x, y and z distinct from zero.

Proof. Equation (3.13) is equivalent to (z−y)(z2+yz+y2) = x3, its possible solutions
satisfy one of the following sets of equations

1. let x = z − y and x2 = z2 + yz + y2, then 3yz = 0 and there are only trivial
solutions,

2. let z − y = 1 and z2 + yz + y2 = x3 > 1 then x is odd for gcd(x, y, z) = 1, and
the equality z2 − 2yz + y2 = 1 implies 3yz = x3 − 1 and 3(y + z)2 = 4x3 − 1,
where y = z − 1 hence 3y2 + 3y + 1 − x3 = 0. By a change of variable, the last
equation is equivalent to 3z2 − 3z + 1 − x3 = 0, it follows that z = −y which is
impossible,
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3. let x = ab with a > 1, a = z − y and z2 + yz + y2 = a2b3 then a and b are odd
and the equality z2 − 2yz + y2 = a2 implies a2(b3 − 1) = 3yz but it is impossible
that a divide y or z and that 3 divides a with gcd(x, y, z) = 1,

4. let x = ab with a, b > 1, a2 = z − y and z2 + yz + y2 = ab3 then x is odd and
a(b3 − a3) = 3yz, since gcd(a, y) = gcd(a, z) = 1 this entails a = 3 therefore
yz = b3 − a3 and b > a. It follows z2 + y2 = 2b3 + a3 and (y + z)2 = 4b3 − a3.
By the equality y = z − a2, y is the unique integer solution of the equation y2 +

a2y+a3− b3 = 0 which is equivalent to z2−a2z+a3− b3 = 0 so z = −y which
is impossible,

5. let x = ab, b > a > 1, a3 = z − y and z2 + yz + y2 = b3 which is odd.
Then 3yz = b3 − a6 and 3(y + z)2 = 4b3 − a6. By the equality y = z − a3,
y is solution of the equation 3y2 + 3a3y + a6 − b3 = 0 which is equivalent to
3z2 − 3a3z + a6 − b3 = 0 hence z = −y, which is impossible.

�

Theorem 3.2.4 The equation

x5 + y5 = z5 (3.14)

has no solution with mutually prime integers x, y and z distinct from zero.

Proof. Equation (3.14) is equivalent to (z− y)(z4 + z3y+ z2y2 + zy3 + y4) = x5 and
its solutions satisfy one of the following impossible cases

1. let x = z− y and x4 = z4 + z3y+ z2y2 + zy3 + y4 then z4 + z3y+ z2y2 + zy3 +

y4− (z− y)4 = 0 and z2− zy+ y2 = 0, which is equivalent to x2 +xy+ y2 = 0,

2. let z4 + z3y + z2y2 + zy3 + y4 = x5 and z − y = 1, then

5yz(z2 − yz + y2) = x5 − 1.

By the change of variable z− y = 1, (z2− z)(z2− z+ 1) = (y2 + y)(y2 + y+ 1)

and z = −y,

3. let x = ab with a > 1, ak = z − y with k between 1 and 5 and z4 + z3y + z2y2 +

zy3 + y4 = a5−kb5 then 5yz(z2 − yz + y2) = a5−kb5 − a4k. By the previous
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arguments, this implies (z2−akz)(z2−akz+a2k) = (y2 +aky)(y2 +aky+a2k)

and z = −y. �

Theorem 3.2.5 Fermat’s equation

x4 + y4 = z4 (3.15)

has no solution (x, y, z) in N∗⊗3 such that gcd(x, y, z) = 1.

Proof. Let X = x2, Y = y2 and Z = z2, Fermat’s equation (3.15) is equivalent to
Pythagore’s equality X2 + Y 2 = Z2 with X even, Y and Z odd, all strictly larger than
2, such that gcd(X,Y, Z) = 1 in N∗ and satisfying (3.11)

x2 = 2ab, y2 = a2 − b2, z2 = a2 + b2,

equivalently
z2 = y2 + 2b2, 2ab = y2 + z2, x2 = 2ab

but the equation 2ab = y2 + z2 is impossible with odd integers y and z by Pythagore’s
Theorem 3.2.1. �

Theorem 3.2.6 For every integer n > 2, Fermat’s equation

xn + yn = zn (3.16)

has no solution (x, y, z) in N∗⊗3 such that gcd(x, y, z) = 1.

Proof. Let n be an odd prime integer, (3.16) is written as

xn = (z − y)(zn−1 + yzn−2 + · · ·+ yn−2z + yn−1) = (z − y)Pn−1(y, z),

where the value of Pn−1(y, z) is odd. Let s = z − y and t = Pn−1(y, z) such that
xn = st. By Lemma 3.2.2, we have

Sn(y, z) =

n−2∑
i=1

{
(−1)i

(
n− 1

i

)
− 1
}
yizn−1−i = sn−1 − t,

and it is denoted nyzQn(y, z) where Qn(y, z) is a symmetric bilinear integer
polynomial of degree n − 3 having a single term y

n−3
2 z

n−3
2 . Then (x, y, z) satisfies one

of the following impossible cases
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1. let x = s and xn−1 = t thenQn(y, z) = 0 and by the change of variable,Qn(y, y+

x) = 0, this is equivalent to

y
n−1
2 Rn(y, y + x) + (y + x)

n−1
2 Rn(y + x, y)− Cn2{−y(y + x)}

n−3
2 = 0

where Cn2 =
(n−1
n−1
2

)
and Rn(y, z) is a homogeneous polynomial of degree n−5

2

such that Rn(z, z) = z
n−3
2 Cn1 and Cn1 =

∑n−2
2

i=1

{
1− (−1)i

(
n−1
i

)}
. Expanding

the expression ofQn(y, y+x) leads to a polynomial of y with positive coefficients,
which is contradictory,

2. let t = xn and z − y = 1, by a change of variable it follows that (z2 − z)Qn(z −
1, z) = (y2 + y)Qn(y, y + 1) and z = −y by the symmetry of Qn,

3. let x = ab such that 1 < a < b, ak = z − y with k between 1 and n, (3.16)
implies Pn−1(y, z) = an−kbn then Sn(y, z) = a(n−1)k − an−kbn. By a change
of variable, (z2 − akz)Qn(z − ak, z) = (y2 + aky)Qn(y, y + ak) which entails
z = −y by symmetry of Qn.

For every integer n = mp with an odd prime factor p, Fermat’s equation with exponent
p does not have solutions and the equation with exponent n is an equationXp+Y p = Zp

with X = xm, Y = ym and Z = zm, so it does not have any solution. Furthermore,
by Theorem 3.2.5, Fermat’s equation with exponent 4 does not have solutions in N∗3, it
follows that (3.16) has no solution for every n = 2k, k ≥ 2. �

Lagrange proved that the equations

xn + yn + zn = 0, n = 3, 5

cannot be solved in Z∗⊗3. Let n = 5, writing y5+z5 = (y+z)(z4−yz3+y2z2−y3z+y4)

and by the same arguments as for Theorem 3.2.4, we have to consider the following
impossible cases

1. let x = −(z+ y) and x4 = z4− z3y+ z2y2− zy3 + y4, by Lemma 3.2.2 we have
z2 + zy + y2 = 0 and we may assume y > 0 and z < 0, the equation becomes
equivalent to (3.14) and this case cannot be solved with x = y − |z|,

2. let z4− z3y+ z2y2− zy3 + y4 = x5 and z− y = 1, then changing the variable by
the second equality leads to z4 − 2z3 + 4z2 − 3z + 1 = y4 + 2z3 + 4z2 + 3z + 1

therefore z = −y,
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3. let x = ab with a > 1, ak = z − y with k between 1 and 5 and z4 − z3y + z2y2 −
zy3 + y4 = a5−kb5 then yz(3z2 − 5yz + 3y2) = a5−kb5 − a4k which implies
(z2 − akz)(z2 − akz + 3a2k) = (y2 + aky)(y2 + aky + 3a2k) and z = −y.

Equation (3.16) is equivalent to an equation in Q

(x1y2z2)n + (x2y1z2)n = (x2y2z1)n

where x = x−1
2 x1 with relatively primes integers x1 and x2, y = y−1

2 y1 with relatively
primes integers y1 and y2 and z = z−1

2 z1 with relatively primes integers z1 and z2.
Denoting X = x1y2z2, Y = x2y1z2 and Z = x2y2z1, we have an equation similar to
(3.16) for (X,Y, Z) but X , Y and Z are not pairwise prime. If z2 = 1, then
gcd(x1y2, x2y1) = 1 and there is no solution of Fermat’s equation with rational x and y
and with z integer.

We have gcd(X,Y ) = z2. As in the proof of Theorem 3.2.6, it is impossible that
n = 2k because Y cannot divide Xk and Zk. For n = 3, the property X2 | 3Y Z implies
X = 3ay2z2 with a relatively prime to x2y1 but Y 2 | 3XZ = 9ax2y

2
2z1z2 is impossible.

For n > 3, Y cannot divide n prime or X and there is no solution. The existence of
solutions of (3.16) in Q∗3 is therefore impossible.

3.3 Catalan’s Equation

Lemma 3.3.1 Let m > 1 and n > 1, Catalan’s equation

xm − yn = 1 (3.17)

implies gcd(m,n) = 1.

Proof. Let d = gcd(m,n), there exist integers a and b such that m = ad and n = bd

and the equation is equivalent to (xa)d = (yb)d + 1. By Theorem 3.2.1 and Fermat’s last
Theorem, this equation does not have non trivial solution for d ≥ 2. �

Proposition 3.3.2 In a cyclic field Fp, p odd in P, for every integer n > 1 (respectively

m) there exists an integer m (respectively n) such that the equation

xm − yn = 1
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has p− 2 non trivial solutions (x, y) in F 2
p if m and n are odd, there are p− 1 non trivial

solutions if there are even.

Proof. In Fp, let x = θa and let y = θb, by the euclidean division am = α (mod p−1)

and bn = β (mod p − 1), with 0 ≤ α < p − 1 and 0 ≤ β < p − 1. If α = 0, xm = 1

(mod p − 1) and the equation has a trivial solution y = 0, in the same way if β = 0,
yn = 1 (mod p − 1) and the equation θα = 2 has a solution in Fp for a single integer
0 < α < p− 1.
Let α ≥ 1 and let β ≥ 1, by Fermat’s first Theorem the equation is equivalent to

θα = θβ + 1,

for every α = 1, . . . , p − 2 there exists an unique integer β such that the equation has a
solution in {1, . . . , p− 2}. The solution β is unique if α and β are odd. If they are even,
the solutions are the same up to their sign. �

By Lemma 3.3.1, m and n cannot have the same parity. Let m = 2a and n − 1 = 2b,
(3.17) is equivalent to

X2 − yY 2 = 1 (3.18)

with X = xa and Y = yb. For y = 2, (x, y) = (±3, 2) are solutions with exponents
(m,n) = (2, 3), by Table (1.1). Let m − 1 = 2a and n = 2b, with the same notations
(3.17) is equivalent to (3.18) where the roles of x and y are exchanged.

Lemma 3.3.3 The unique integer solutions of Eq. (3.17) with (m,n) = (2, 3) are

(x, y) = (±3, 2).

Proof. The equation

(x− 1)(x+ 1) = y3

has no solution with y odd in P so there exist integers y1 and y2 such that y = zy1y2 with
z = 2α and gcd(y1, y2) = 1, and such that one of the sets of equations holds

x− 1 = zy3
1 , x+ 1 = z2y3

2 ,

x− 1 = z2y3
1 , x+ 1 = zy3

2 .
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In the first case, the solutions of the second order equation z2y3
2 − zy3

1 − 2 = 0 are
not powers of 2 except with y1 = y2 = 1 and α = 1. In the second case, the equation
z2y3

2 − zy3
1 + 2 = 0 has a discriminant ∆ = y6

1 − 8y3
2 which must be a square integer c2

but y3
1 + c is strictly negative and z cannot a power of 2. �

Theorem 3.3.4 The unique integer solutions of Eq. (3.17) are (x, y) = (±3, 2) with

(m,n) = (2, 3).

Proof. By Lemma 3.3.1 and a change of variable, a necessary condition for the
existence of a solution of (3.17) is the existence of a solution of (3.18) where m = 2 and
n is odd. Using the same argument as for Lemma 3.3.3, the equation

(x− 1)(x+ 1) = yn

is equivalent to both equations

x− 1 = zkyn1 ,

x+ 1 = zn−kyn2

where the integers y1 and y2 satisfy y = zy1y2 and gcd(y1, y2) = 1, with z = 2α and k
in {1, . . . , n− 1}. These equations are equivalent to

z2kyn1 ± 2zk + yn3 = 0

with y3 = zy2 and the latter one has no solution except with n = 3, by Lemma 3.3.3. �
Catalan’s equation is equivalent to xp − yq = −1, for arbitrary p and q. It generalizes to
equations xp−yq = k, for integers k. With p = 3 and q = 2, the solutions of xp−y2 = 2

reduce to (x, y) = (3,±5) by Proposition 3.1.8.

Proposition 3.3.5 The unique integer solutions of the equation

xp − y2 = −2

with p ≥ 2 is (x, y) = (−1,±1) with p odd.

Proof. The solutions of this equation are necessarily odd. With p odd, let y = 2b + 1

with b ≥ 1, the equality xp + 1 = 4b(b + 1) implies 8 | xp + 1. Let x = 2αa + 1 with
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a ≥ 1 odd and α ≥ 1

xp + 1 = (x+ 1)(xp−1 + · · ·+ 1)

= 2(2α−1a+ 1)(xp−1 + · · ·+ x+ 1)

but (2α−1a + 1)(xp−1 + · · · + 1) is odd so there is no solution. Let p be even, denoting
p = 2cr with r odd, the equation (x2c)r − y2 = −2 has no solution according to the
previous case. �

The proof of Proposition 3.3.5 applies to the equation

xp − y2 = ±k, p ≥ 2,

now xp ∓ k − 1 is multiple of 8 if y is odd. With k = n2, the equation xp − y2 = −n2

implies xp = (y − n)(y + n) and x | 2n, it follows that for n ≥ 2 in P, the equations
xp − y2 = −n2 have no solutions in Z∗2 for p ≥ 2. If n = 1 (mod 4), it is the sum of
two squares n = a2 + b2, by Theorem 2.4.3, and

xp + a2 = x.
(
x
p−1
2

)2

+ a2 = y2 − b2,

the existence of solutions depends on the coherence of this equality.

The equation xp − y2 = −4 implies y − 2 and y + 2 are multiple of x hence x | 4 but
there is no solution. Proposition 3.1.9 yields solutions of xp − y2 = 4.

By Proposition 3.1.11, the equation x3 − y3 = 2mz has infinitely many integer
solutions. Catalan’s conjecture of the existence of a unique solution up the the sign does
not generalize.

3.4 Generalizations of Fermat’s Last Theorem

Fermat’s equation generalizes to integers x, y and z with different exponents and to
linear equations of xn, yn and zn. Let

xn + yn = pzn (3.19)

where x, y and z are pairwise primes.
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With n = 2, the equation x2 + y2 = pz2 with pairwise primes x, y and z has the
solution

(x, y, z, p) = (7, 9, 8, 2).

It has infinitely many solutions such that x, y and z are not mutually primes.

Theorem 3.4.1 Let p > 1 be integer, the equation

x3 + y3 = pz3 (3.20)

with pairwise primes x, y and z strictly larger than 1 in N∗⊗3 has infinitely many solutions

with p = 1 (mod 4) and p = 3 (mod 4) with p > 3. It has no solution with pairwise

prime integers and with p even.

Proof. The existence of p prime such that

pz3 = (x+ y)(x2 − xy + y2)

implies p | (x2 − xy + y2) or (x + y). In the first case, (x + y) | z3 and there exists an
integer k ≥ 1 such that

z3 = k(x+ y),

x3 + y3 = pk(x+ y)

and x2 − xy + y2 = pk.

With k and then z even, (3.20) is impossible with x and y odd. With k odd, either z
is even if x and y have the same parity, or z is odd if x, respectively y, is even and y,
respectively x, is odd. The first case implies 8 | x3 + y3 and this is impossible with x and
y odd. In the second case, p must be odd and writing (3.20) with x = 2a, y = 2b+ 1 and
z = 2c+ 1, it is equivalent to

8(a3 + b3) + 12b2 + 6b = 8pc3 + 12pc2 + 6pc+ p− 1

= 2kp(a+ b) + kp− 1,

0 = 3(pc− b) +
p− 1

2
(mod 2),

0 = 1− b+
p− 1

2
(mod 2),
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then p = 1 (mod 4) and

x3 + y3 = z3 (mod 4)

or p = 3 (mod 4) and

x3 + y3 = z3 (mod 2).

There exist solutions in both cases, for example (2, 7, 3) with p = 13 and (4, 5, 3) with
p = 7.
In the second case, let y + x = mp with p prime and an integer m ≥ 1. With p = 2,
(3.20) is impossible unless x, y and z are odd then 4 | (x + y − 2) and x3 + y3 differs
from 2z3.
Let p > 3 in P, x and y both even or odd implies 2 | pzn which is contrary to the
assumptions so let x = 2a with y = 2b+ 1 and z = 2c+ 1. The equality x3 + y3 = pz3

implies

4(a3 + b3 − pc3) =
p− 1

2
+ 6(pc2 − b2) + 3(pc− b), (3.21)

0 =
p− 1

2
+ 3(pc− b) (mod 2).

If p = 3 (mod 4), there exist a solution for p = 7. Assuming that p = 1 (mod 4), b and
c have the same parity, 2 | (b3 − pc3), 4 | (pc2 − b2), 2 | (pc− b) and

p− 1

4
+

3(pc− b)
2

=
p− 1

4
+
c− b

2
= 0 (mod 2).

If p = 1 (mod 8), c = b (mod 4), there exist infinitely many solutions with x = 2y and
z = y which are not mutually primes, (1, 6, 4) is solution with p = 17. If p = 5 (mod 8)

p− 1

4
= 1 (mod 2)

and c = b + 2 (mod 4) then (3.21) implies b = 0 (mod 4), b and c must be even but
(3.21) is then impossible for a3 = 33b+ 38 (mod 8) is divided by 2 but not by 8.
If p is not prime, let p = p1m1 where p1 is prime with an exponent α1 6= 0 (mod 3) in the
factorisation of p for the prime divisors of pwith a cubic exponent cannot be distinguished
from those of z. By the same arguments as for p prime, p1 does not divide x2 − xy + y2

therefore it should divide x + y. With p1 = 2, (3.20) with x or y even would imply the
three variables are even so x and y must be odd. Let x+ y = 2a

8a3 = x3 + y3 + 6axy = 2m1z3 + 6axy
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implies a and m1 even, a = 2b and m1 = 2m2 but 26b3 = 4m2z3 + 12bxy implies b
and m2 even and, by induction α1 should be infinite.
With p1 = 3, (3.20) with x even, y and z odd implies that m1 and therefore p are odd,
but 3 does not divide x + y as proved above (cf. Proposition 3.1.7). With p1 > 3, p > 3

and the proof with p prime applies. �

Example. The following triples are solutions of (3.20), there is no solution with p = 3, 5

and there exist other solutions for larger values of p

1. (x, y, z) = (4, 5, 3) with p = 7,

2. (x, y, z) = (2, 7, 3) with p = 13,

3. (x, y, z) = (3, 5, 2) and (x, y, z) = (1, 6, 4) with p = 17,

4. (x, y, z) = (2, 3, 1) with p = 33,

5. (x, y, z) = (1, 7, 4) with p = 41.

Removing the condition gcd(x, y, z) = 1, other solutions of (3.20) are all multiples of
the previous ones. With p = 2, (3.20) is satisfied by x = y = z in N∗. Legendre (1830)
proved that the next equations have no integer solutions

1. x3−y3 = z3, equivalent to x3 = y3 +z3 has no solution by Fermat’s last theorem,

2. x4 + 2y4 = z4,

3. x4 + 8y4 = z2,

4. x4−y4 = z4, equivalent to x4 = y4 +z4, has no solution by Fermat’s last theorem.

Theorem 3.4.2 (Dirichlet) For all integers n 6= 0, 2 and A not divisible by 2, 5 and all

integers 10k ± 1, the equation

x5 ± y5 = 5nAz5

has no pairwise prime solutions (x, y, z).
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Proof. Let fxy = x4−x3y+x2y2−xy3 +y4, x5 +y5 = (x+y)fxy and the common
prime factors of x + y and fxy are prime factors of (x + y)5 − fxy they are therefore
5 or 3 by Lemma 3.2.2, otherwise they are mutually prime. We assume without loss of
generality that x = 2a and y = 2b + 1 and the prime factors of x + y and fxy are odd.
With the common prime factor 5, we get n = 2 and with 3, x5 + y5 cannot be multiple
of 34c, c > 0, the constant A = 1 (mod 10) being not allowed. Let x + y = 3k, then
x5 + y5 = 243k5 (mod 5) and n = 0. Let x+ y = 5k, then x5 + y5 is multiple of 52k

with k 6= 0 (mod 5) since gcd(x, y) = 1, and there is no solution.

Assuming that x+ y = 7k

x5 + y5 = 2k5 + k4y + 3k3y2 + k2y3 + 2ky4 (mod 5)

with y = −k, this polynomial equals 5k5 and k multiple of 5 implies n = 7 but
gcd(x, y) > 1 so there is no solution. �

The proof is the similar for the equation x5 − y5 = 5nAz5, replacing fxy with gxy =

x4+x3y+x2y2+xy3+y4. The equation x5+y5 = 5nAz5 has many solutions with z = 1

and x+ y multiple of 5 such as 25 + 35 = 52.11, 75 + 85 = 52.1983, 225 + 35 = 53A1

and 65 + 195 = 53A2 with Aj = 1 (mod 10). If x + y is multiple of 3, n is generally
zero.

Theorem 3.4.3 The equation

x5 ± y5 = pz5 (3.22)

with pairwise primes x, y and z in N∗ has no solution with p = 2, p = 5 (mod 8), p = 3

(mod 4) or with z even.

Proof. The equality

x5 + y5 = (x+ y)(x4 − x3y + x2y2 − xy3 + y4)

implies p | (x4 − x3y + x2y2 − xy3 + y4) or p | x + y. In the first case, there exists an
odd integer k ≥ 1 such that

x4 − x3y + x2y2 − xy3 + y4 = pk (3.23)
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therefore z5 = k(x+ y) and x4 + y4 = pk+xy(x2 + y2−xy). In the second case, there
exists an integer k ≥ 1 such that x+ y = pk.

If x and y had the same parity they are odd, z must be even. Because p does not divide
the left side of (3.23), it should divide x+ y = pk which divides z5 and

pz5 = (x5 + y5) = (x+ y)5 − 5xy(x3 + y3)− 10x2y2(x+ y)

= (pk)5 − 5xy(x3 + y3)− 20kx2y2

= (pk)5 − 5xy(x+ y){(x+ y)2 − 3xy} − 20kx2y2,

z5 =
x+ y

2
(xy)2 (mod 2)

the equation does not have solutions with z even, nor with z odd since x + y = pk does
not divide z5. The argument is similar for x5− y5 = pz5, x and y having the same parity.
Let x be even and let y and z be odd. Denoting x = 2a, y = 2b+ 1 and z = 2c+ 1, the
equation is equivalent to

25(a5 + b5 − pc5) + 5.24(b4 − pc4 + b3 − pc3) + 5.23(b2 − pc2) + 5.2(b− pc) = p− 1.

With p = 1 (mod 4), the equation implies y5 − z5 = 0 (mod 4) hence b and c have the
same parity but the equation has no solution such that 8k - (p − 1). With p = 3

(mod 4), it implies y5 + z5 = 0 (mod 4), b and c have again the same parity so the left
side of the equation is divisible by 4 but 4 - (p− 1). �

We now consider the question of finding exponents solutions of (4.11) for triples of
integers (x, y, z).

Proposition 3.4.4 The equation

3n + 4r = 5s (3.24)

has no solution with integers n, r, s strictly larger than 2.

Proof. With n = 2k + 1, the equation is written as 3.9k + 4r = 5s, it has no solution
fr −1 6= 1 (mod 4).

With n = 2k, the equation 9k + 4r = 5s implies (−1)k + (−1)r = 0 (mod 5) hence
k and r do not have the same parity. With n = 4m the equation 81m + 4r = 5s or 0 = 1

(mod 4) has no solution. With n = 4m + 2 and r = 2h, 9.81m + 16h = 5s implies
(−2)h = (−4)r (mod 9) and this is still impossible. �
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Proposition 3.4.5 The equation

5n + 12r = 13s (3.25)

has no solution with integers n, r, s strictly larger than 2 in N∗.

Proof. Let n = 2k + 1 with k ≥ 1, (3.25) implies 5.25k = 5 = 1 (mod 12), so n
must be even. Let n = 2k > 2, assuming r = 2l + 1 and s = 2h + 1 with l and h ≥ 1,
25k + 12.144l = 13s implies 2.(−1)l = 3.(−1)h (mod 5) then l and h cannot have
the same parity. Let r = 4l2 + 1 and s = 2h + 1 with odd integers l2 and h ≥ 1 then
25k + 12.20736l2 = 13.169h implies (−1)l2 − 1 = 0 (mod 13), therefore l2 should be
even and 25k + 128l3+1 = 13s is equivalent to 2 = 3.(−1)h (mod 5), h should be even
which is contradictory to the assumption.
Consider now r = 2l + 1 and s = 4h2 + 1 with l odd, the equation is written as 25k +

12.144l = 134h2+1, it implies (−1)k − 1 = 0 (mod 13), therefore k is even, then let
n = 4k2+1, r = 2l+1 and s = 4h2+1 5.625k2 +12.144l = 134h2+1 implies 5+12 = 0

(mod 13) which is not true.
With r even and s odd the equation would become 25k + 144l = 13.169h and this is
impossible modulo 5, with r odd and s even the equation is still false. �

Proposition 3.4.6 The equation

8n + 15r = 17s (3.26)

has no solution with integers n, r, s strictly larger than 2 in N∗.

Proof. Let n = 2k+1, with k ≥ 1, the equation 8.64k+15r = 17s implies (−1)r = 1

(mod 4) so r should be even, then let r = 2l, l ≥ 1, the equation becomes 8.64k +

225l = 17s hence 8.(−4)k + 4l = 0 (mod 17) and this is impossible.
Let n = 2k, k ≥ 1, the equation 64k + 15r = 17s modulo 4 still requires r even, let
r = 2l, l ≥ 1, the equation becomes 64k + 225l = 17s entails (−1)k = 2 = 2s (mod 5)

which wis impossible. �

Proposition 3.4.7 The equations

x2 + y3 = z2, (3.27)

x2 + y3 = z3 (3.28)
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have solutions in N∗.

The solution of (3.27) is not unique and the parity of the integers may be arbitrary

(x, y, z) = (1, 2, 3), (3, 3, 6), (6, 4, 10).

Equation (3.28) has the solution (x, y, z) = (13, 7, 8). In F3 and if gcd(x, 3) = 1, the
equation is equivalent to y + 1 = z and therefore to (x− 1)(x+ 1) = 3y(y + 1) hence 3
divides x− 1 or x+ 1.

Proposition 3.4.8 The equation

x2 + y3 = a2 + b3 (3.29)

has solutions in N∗.

There exist many solutions of (3.29), for example

(x, y, a, b) = (1, 4, 8, 1), (2, 5, 11, 2), (3, 2, 4, 1), (5, 4, 9, 2), (9, 3, 10, 2),

(9, 4, 12, 1), (9, 6, 17, 2), (10, 6, 17, 3), (11, 17, 20, 4), etc.

The problem posed by Fermat was to find three distinct pairs of integers satisfying the
same equality, it is not solved.

3.5 Exercises

Exercise 3.1. Find all rectangular triangles in N∗ such that their area is a square.
Exercise 3.2. [Euler] Solve the equation x3 + y3 + z3 = t3 in N∗4.
Exercise 3.3. Solve the equation x5 + y5 + z5 = t5 in N∗4.
Exercise 3.4. Prove that the equation x3 + y3 = 5z3 has no solution in N∗3.
Exercise 3.5. Prove that the equation x3 + y3 = 2kz3 has no solution in N∗3.
Exercise 3.6. [Legendre] Prove that the equations x4 + 2y4 = z4 and x4 + 8y4 = z2 have
no solutions in N∗3.
Exercise 3.7. Find the solutions of the equation x2 + y2 = z4.
Exercise 3.8. Prove that the equations x2k − y2k = z2n do not have non trivial integer
solutions.
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