Design of Single-Sided Linear Induction Motor (SLIM) for Magnetic Levitation Railway Transportation
Issue:
Volume 3, Issue 1, March 2018
Pages:
1-9
Received:
3 June 2018
Accepted:
19 June 2018
Published:
10 July 2018
Abstract: This paper studies Single-sided linear induction motor (SLIM) which can be used to motivate in a levitation railway transportation system. The rotary motor is cut out and laid flat to form the equivalent linear induction motor. Linear induction motors (LIM) are used in many different applications, from slow moving sliding doors to high-speed trains around the world. The primary goal is to analyze a small laboratory sized single-sided linear induction motor (SLIM) for educational aid. This research describes the design and construction of the 100 W rating stator component of a SLIM. SLIM consists of stator and rotor. The stator can supply 20 V and 5 A. It is built with iron laminations; having 6 poles and wound with a double layer type. The rotor is coated with aluminum and attached with six permanent magnets. This rotor is located on top of the aluminum track. A SLIM model of specified parameters is designed using a user-interactive MATLAB program. The performance curves of the SLIM i.e., thrust and efficiency, are drawn and then analyzed for target thrust and different rated slips. The effect of parameters of the SLIM such as air-gap, thickness of permanent magnet and the number of poles on the performance of SLIM are analyzed and the results are also discussed.
Abstract: This paper studies Single-sided linear induction motor (SLIM) which can be used to motivate in a levitation railway transportation system. The rotary motor is cut out and laid flat to form the equivalent linear induction motor. Linear induction motors (LIM) are used in many different applications, from slow moving sliding doors to high-speed trains...
Show More
Availability and Reliability Analysis for Dependent System with Load-Sharing and Degradation Facility
Neama Salah Youssef Temraz
Issue:
Volume 3, Issue 1, March 2018
Pages:
10-15
Received:
22 May 2018
Accepted:
14 June 2018
Published:
13 July 2018
Abstract: In this paper, analysis of a system consists of two dependent components with degradation facility and load sharing is introduced. The system is considered to be consisted of two components connected in parallel and works dependently where the failure of any component affects the failure of the other one. In addition, it is assumed that there is a common failure between the two components. All failure and repair rates are assumed to be constant follow bivariate exponential distribution. Markov models are used to construct the mathematical model of the system. Analysis of the availability function and steady-state availability of the model is discussed. Reliability and mean time to failure for the system is introduced. A numerical example is given for illustration.
Abstract: In this paper, analysis of a system consists of two dependent components with degradation facility and load sharing is introduced. The system is considered to be consisted of two components connected in parallel and works dependently where the failure of any component affects the failure of the other one. In addition, it is assumed that there is a ...
Show More